

UNIVERSITY OF OXFORD

Rate Effects for Monopile Foundations: Small-Scale Model Tests

Kuen-Wei (Wayne) Wu, DPhil candidate (kuenwei.wu@eng.ox.ac.uk)

Centre for Doctoral Training in Renewable Energy Marine Structures, Department of Engineering Science, University of Oxford

Academic supervisors: Prof. Byron Byrne, Prof. Guy Houlsby Industry supervisor: Dr. Amin Aghakouchak (Ørsted)

Background

- Monopile foundations for offshore wind turbines are subject to transient loading (e.g. storms, emergency stop of the turbine).
- Soil strength/stiffness and cyclic behaviour are rate-dependent. (see example PISA pile testing)
- Current design practice has yet to include rate effects.
 - → over-conservative?

Rate effects in Cowden till in the

PISA pile testing (Byrne et al., 2020)

Model testing in dry sand

Pile rotation

- 14/25 yellow Leighton Buzzard sand (D_r= 4% 60%) was used.
- Fransient responses are seen when accelerating/decelerating (similar to TESRA type), which may be due to the inertial effects of the actuation system (see Wu et al., 2020).
- The overall behaviour is rate-insensitive.

Viscosity types of soils (Tatsuoka et al., 2008)

TESRA type Transient effects of strain rate and strain acceleration (TESRA) (example: dry silica sand)

Fast Slow Isotach type

Unique strength-strain-strain rate behaviour (example: clay)

Model testing in clay

Moment

Pile rotation

- Result shows rate-dependent responses, in agreement with the PISA testing at Cowden.
- Isotach type behaviour is observed.

Research structure

Test equipment

Computer-controlled loading rig

Cyclic loading test rotation ratcheting 100 1000 Number of cycles

- Load path: 1000 cycles, load-controlled one-way cyclic loading.
- Pile stiffness, permanent rotation are rate-dependent.
- Post cyclic loading behaviour varies with the cyclic frequency.

Mobile laboratory for clay tests

On-site mobile laboratory

Naturally formed glacial till

Pile gapping

Cowden till $s_n > 50$ kPa.

Soil characterisation is in progress.

Conclusions

- Transient responses are seen in dry sand, but the overall pile behaviour is rate-independent.
- Rate effects in clay are observed during monotonic loading and cyclic lateral loading.
- Further work on calibrations of soil models and investigating scaling issues will continue to inform design methods.

Reference list

- [1] Byrne et al. 2020. Monotonic laterally loaded pile testing in a stiff glacial clay till at Cowden. Géotechnique, 70(11): 970-985.
- [2] Tatsuoka et al. 2008. Various viscosity types of geomaterials in shear and their mathematical expression. Soils and Foundations, 48(1): 41–60.
- [3] Wu et al. 2020. Investigations of rate effects for monopile foundations: laboratoryscale model tests. ISFOG2020, Texas, USA.

Acknowledgment

The author is supported by Ørsted through the PICASO project for his DPhil studies at the University of Oxford, as a member of the EPSRC Centre for Doctoral Training in Renewable Energy Marine Structures (http://www.rems-cdt.ac.uk/) (EP/L016303/1).

